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ABSTRACT

Multiple regression has been widely used to apportion particle light
scattering among distinct chemical species.  The resulting scattering
budgets are shown here to be unbiased estimates under certain theoretical
conditions.  The theory allows species' particle size distributions and water
uptakes to vary from sample to sample, as they are known to do in reality. 
The sole constraint is that variations in each species' characteristics be
statistically independent of all species' concentrations.  Individual
violations of this condition cause identifiable biases, and multiple
violations can offset each other to yield regression estimates that are
accurate by accident.  Detailed and summary accountings of statistical
errors are illustrated for examples based on actual measurements.

INTRODUCTION

We often wish to resolve a pollution effect into a sum of contributions from different
types of emissions.  The light scattering budget used to apportion visibility effects is a familiar
example of such accounting (e.g. Sisler and Malm, 1994).  A scattering budget represents
scattering by particles, σsp (Mm-1), as a linear function of particulate species concentrations, xj

(µg/m3):
σsp = Σejxj. [1]

The term ejxj represents the scattering attributed to the jth species.  The mass-specific scattering
coefficient ej (Mm-1/[µg/m3] = m2/g), often referred to as an "efficiency", depends on the species'
refractive index, water uptake, and particle size distribution (White, 1986).

Of all air pollution effects, reduced visibility is the best understood at the level of
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physical law.  With sufficiently comprehensive measurements of individual particles, the
scattering coefficient could be calculated directly from electromagnetic theory.  Actual field
measurements are of course incomplete chemically and/or aggregated over many particles. 
However, the most detailed of these measurements can be augmented by plausible and consistent
physical assumptions to define model aerosols that do support theoretical calculations (Sloane,
1983; Zhang et al., 1994; Lowenthal et al., 1995).  Such hybrid models express our present
understanding of the functional relationship between visibility and atmospheric composition.

Multiple regression is sometimes substituted for theoretical modeling in visibility
analyses (e.g. Appel et al., 1985).  Most particle composition data are from filter measurements
that aggregate particles of all diameters up to 2.5 µm or more.  These unresolved measurements
are inadequate for theoretical calculations, because light scattering is a strong function of particle
size.  If actual scattering is also measured, however, its regression on bulk composition yields an
empirical relationship similar to [1]:

σsp = Σej
OLS.xj ±ε. [2]

The scatter ε in [2] is typically small, accounting for less than 10% of the variance in σsp.  The
regression coefficients ej

OLS are interpreted as estimates for the specific scattering coefficients ej

(White, 1976; Anderson et al., 1994). 

Although similar to each other in form, equations [1] and [2] represent different
relationships.  Equation [1] is a theoretical relationship, and holds exactly for individual aerosol
samples in which distinct species are mixed externally, as distinct collections of particles.  The
specific scattering coefficients ej for external mixtures can be calculated directly from particle
charactistics, and describe a causal relationship between scattering and mass concentration.  In
contrast, equation [2] is an approximate description of multiple samples of aerosols in which
species are arbitrarily mixed.  The regression coefficient ej

OLS describes an observed association
between adventitious variations in scattering and concentration.  White (1986) presented
idealized examples of atmospheric fluctuations that would be unrepresentative of the
perturbations expected from changed emissions. 

This paper assesses the practical importance of the theoretical distinction between
specific scattering and regression coefficients.  The examples of White (1986) show that the
atmosphere may respond to novel perturbations in ways not observed among existing
fluctuations.  One might still hope, however, that such hypothetical distinctions would somehow
"average out" in the real atmosphere.  The question may be framed as follows:  how reliably do
regression analyses of observed atmospheric data illuminate the underlying causal dependence of
scattering on aerosol composition?
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METHODS AND DATA

Experimental comparisons between ej and ej
OLS can be difficult to interpret.  In situ

observations of ej are available only for "species" that can be isolated for measurement, such as
particle size ranges that one can sort aerodynamically or electrostatically (e.g. White et al., 1994).
 Calculation of ej from particle measurements requires many assumptions (Lowenthal et al.,
1995).  The regression coefficients ej

OLS are straightforward statistics of observables, but can be
sensitive to measurement precision (White and Macias, 1987) and model selection (Sloane,
1988).  Differences between ej and ej

OLS can arise from any of these factors in addition to the
distinction of interest here, which is the distinction between atmospheric fluctuations and
emissions perturbations. 

McMurry and coworkers at the University of Minnesota Particle Technology Lab (PTL)
have described aerosol models that integrate detailed particle measurements with electromagnetic
theory (McMurry and Zhang, 1991; Zhang et al., 1993; Zhang et al., 1994; McMurry et al.,
1996).  Their work yields synthetic observation sets for which the exact relationship of scattering
to particle composition is known a priori.  Within the closed worlds of these models, both
scattering and concentration "measurements" are made without error.  More importantly, the
assumptions on which specific scattering coefficients are calculated are known to be valid.  The
PTL models thus offer us a virtual laboratory in which ej and ej

OLS are directly comparable.

The next section identifies theoretical conditions under which classical regression
analyses yield unbiased apportionments of light scattering to individual particle species.  It goes
on to derive an equation that relates errors in the regression estimates to violations of these
conditions.  The equation offers a "statistical microscope" that resolves the difference ej

OLS-ej into
distinct components, each arising from atmospheric correlations that regression analysis neglects.
 A subsequent section illustrates this "microscopic" view with an example application to PTL
model data.

In order to focus on statistical issues without distractions from particle-size dynamics (cf.
White, 1986), attention in the next two sections will be restricted to external mixtures.  The exact
linearity of the scattering/mass relationship in this special case facilitates comparisons with the
necessarily linear approximations produced by regression.  The extension to aerosol models that
include internal (within-particle) mixing is straightforward.

The examples considered in the present paper are based on comprehensive fine-particle
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measurements from the Southern California Air Quality Study (SCAQS).  SCAQS yielded
complete data sets for 33 four-hour daytime samples and 11 twelve-hour overnight samples
during the summer of 1987 at Claremont (McMurry and Zhang, 1991).  Bimodal lognormal
particle size distributions were determined from impactor data for organic and elemental carbon,
sulfate, nitrate, and other ions, and iron.  Aerosol water uptake was determined by tandem
differential mobility analysis (TDMA) (McMurry and Stolzenburg, 1989).

In our examples, the aerosol is modeled as a mixture of nitrate, sulfate, carbonaceous, and
soil particles (McMurry and Zhang, 1991).  Each chemical fraction is given its observed particle
size distribution and assigned unbound water inferred from TDMA.  Scattering coefficients for
the resulting particle distributions are calculated from electromagnetic theory for spheres (Bohren
and Huffman, 1982).  The calculations show reasonable agreement with measured scattering
coefficients (not used here).  Results are insensitive to details of the aerosol model, however, so
the agreement with observations provides no support for external mixing in the actual aerosol
(McMurry et al., 1996).

THEORY

The energy scattered by a collection of particles is the sum of the energies scattered by
individual particles.  Aerosols whose constituents are partitioned into mutually exclusive classes
of particles are thus natural subjects for scattering budgets.  Such aerosols are described as
external mixtures (Jaenicke, 1978).

Distinct species in an externally mixed aerosol consist of disjoint subsets of the aerosol's
particles.  Each subset can be regarded as a subaerosol, whose contribution to total scattering is
the sum of the contributions from its member particles.  The jth species in an external mixture
thus has a well defined scattering coefficient σj, and the total scattering is the sum of species
contributions: σ = Σσj. 

The specific scattering of an externally mixed species j is defined as the ratio ej = σj/xj of
species scattering to species mass.  To distinguish specific scattering coefficients (ej,  m2/g) more
clearly from species’ scattering coefficients (σj, Mm-1), we shall often refer to the former as
efficiencies (cf. White, 1986).  Scattering is a strong function of particle size, and a species'
distribution with respect to particle size responds to atmospheric processes and shifts in the mix
of emissions.  The efficiency ej thus varies from sample to sample; we shall treat these variations
as random fluctuations about a population mean, the expected value.
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Efficiencies are modeled as random variables that are statistically independent of species
concentrations.  More precisely, let eij be the efficiency of species j in observation i, and let E(ej)
be the expected value of ej in the sampled atmosphere.  Let xij be the concentration of species j in
sample i, and suppose that a series of n samples yields the matrix x = x11,...,x1k;x21,...,x2k;...;xn1,
...xnk of observed concentrations.  When we refer to the fluctuations in ej as random, we mean
that knowing all concentrations measured in all observations doesn't help to predict the efficiency
eij associated with any individual observation.  The conditioned expectation remains the
unconditioned mean:

E(eij│x) = E(ej) for each i and j. [3]
For notational economy the population mean E(ej) will be indicated simply by ej in the remainder
of this paper, individual values eij from the population being distinguished by the added
subscript.

Vasconcelos et al. (1994) reported an instance of conditions likely to fail condition [3]. 
Near the Grand Canyon in summer, they found a statistical association between high relative
humidities and high sulfate concentrations.  This suggests that E(RHi│high xi,sulfate) >> 0.  High
humidities inflate sulfate scattering/mass ratios, because unbound water increases the scattering
cross sections of hygroscopic particles without increasing measured species mass (Charlson et
al., 1978).  This means E(ei,sulfate│RHi>>0) > esulfate, suggesting E(ei,sulfate│high xi,sulfate) > esulfate,
since E(RHi│high xi,sulfate) >> 0.  But E(ei,sulfate│high xi,sulfate) > esulfate is contrary to [3].

Following Cass (1979) and Trijonis (1979), many analysts have accounted for the effect
of humidity on scattering by introducing a modified concentration, xij,wet = xij/(1-RHi).  To the
degree that eij = eij,dry/(1-RHi) accurately models the functional dependence of scattering
efficiency, the change of variable allows analysis to proceed in terms of a "dry" efficiency that is
independent of humidity:

σij = eijxij = [eij,dry/(1-RHi)]xij = eij,dry[xij/(1-RHi)] = eij,dryxij,wet.

The mean efficiencies ej (wet or dry) provide an approximate description of scattering as
a deterministic function of species concentrations:

σi = Σjejxij + εi,
where

εi = Σj(eij-ej)xij. 
By condition [3], the ej suffice to apportion mean scattering.  Letting meani denote the mean over
all observations, we have: 

meani[σij] = meani[eijxij] ≈ meani[E(eijxij│x)] = meani[E(eij│x)xij] = meani[ejxij] =
ejmeani[xij].
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The simultaneous equations describing all n samples take the matrix form
σσσσ = xe + εεεε, [4]

where σσσσ and εεεε are column n-vectors and e is a column k-vector.  The total scattering σσσσ and
species concentrations x are fixed by measurement, and the error εεεε carries all of the randomness
introduced by variations in the scattering efficiencies.  If n≥k and εεεε is negligibly small, then [4]
provides  an overdetermined set of equations for the unknown vector e of mean scattering
efficiencies, in terms of the measured quantities σσσσ and x.

Classical regression analysis estimates e as the ordinary least squares solution to [4]
(Seber, 1977),

eOLS = (xTx)-1xTσσσσ.  [5]
The error δδδδ = eOLS - e in this estimate depends on the random error in the deterministic
relationship:

eOLS = (xTx)-1xT(xe+εεεε)
= e + (xTx)-1xTεεεε. [6]

Equation [3] implies that δδδδ has zero expectation: 
E((xTx)-1xTεεεε│x) = (xTx)-1xTE(εεεε│x) = 0, because E(εi│x) = E(Σj(eij-ej)xij│x) = ΣjxijE(eij-ej│x) = 0
for each i.  Given [3], eOLS is thus an unbiased estimate for e:

E(eOLS│x) = e.

The error δδδδ = (xTx)-1xTεεεε in eOLS arises from empirical associations between concentrations
and efficiencies.  The derivation of [4] shows that εεεε = Σhεεεε(h), where εεεε(h) is the vector whose ith

entry is (eih-eh)xih, h=1,...,k.  The only optical properties involved in εεεε(h) are those of species h;
εεεε(h) = 0 for a species with constant efficiency eih ≡ eh.  The estimation error is the sum δδδδ =
Σhδδδδ(h), where δδδδ(h) = (xTx)-1xTεεεε(h).  The only optical properties involved in δδδδ(h) are again those
of species h; δj(h) represents the effect of variations eih-eh in the actual efficiency of species h on
the estimated efficiency ej

OLS of species j.  As shown above, fluctuations in efficiencies affect
eOLS only when they correlate in some fashion with species mass concentrations; however, δj(h)
is not a simple function of individual correlations.

The error δj = Σhδj(h) in the estimate ej
OLS for any species j can be apportioned into

contributions associated with concentration dependences in the scattering efficiency of that and
each other species h.  The aggregate error δj = ej

OLS-ej can also -- and more easily -- be calculated
as the difference between the regression estimate and the true mean (Sloane, 1988).  The
"microscopic" view offered here carries useful additional information, however, even if this
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information is not easily interpreted in terms of simple aerosol statistics.  The decomposition δj =
Σhδj(h) can reveal estimates to be accidentally -- and thus ungeneralizably -- successful, because
they result from offsetting errors in the estimation model. 

EXAMPLE

This section illustrates the foregoing ideas with a concrete example based on SCAQS
measurements.  McMurry and Zhang (1991) integrated SCAQS data into various detailed models
of the ambient aerosol.  We focus here on a model depicting the aerosol as an external mixture of
four chemically distinct particle types:  nitrate, sulfate, carbonaceous, and soil. 

As part of SCAQS, particle size distributions of chemical species were measured with
Berner (sulfate and nitrate), MOUDI (carbon), and DRUM (soil iron) impactors in each of 44
sequential observation periods (Zhang et al., 1993).  For each species and each period, McMurry
and Zhang (1991) computed an individual scattering efficiency eij, accounting in the process for
water uptakes inferred from TDMA data.  The modeled scattering efficiencies thus vary from
sample to sample, responding to changes in both size distribution and water content.  These
variations are evident in the standard deviations of Table 1, which summarizes modeled mass
concentrations and scattering efficiecies, and Tables 2 and 3 show they are not necessarily
random.

Total fine particle scattering in each sample is the sum of the contributions by individual
species,

σi = ei,nitratexi,nitrate + ei,sulfatexi,sulfate + ei,carbonxi,carbon + ei,soilxi,soil. 
(The concentrations xi,j appearing here are from the same impactor data used in the calculation of
ei,j; since the species are modeled as externally mixed, their modeled total scattering is in fact
defined by this sum.)  The mean over all 44 samples is thus the sum of the mean contributions,

meani(σi) = meani(ei,nitratexi,nitrate) + meani(ei,sulfatexi,sulfate)
+ meani(ei,carbonxi,carbon) + meani(ei,soilxi,soil).     [7]

Equation [7] provides an exact, causal budget for light scattering, given in column 1 of Table 4.

The mean products on the right-hand side of [7] are typically estimated in practice as the
products of the factor means:  meani(eijxij) ≈ meani(eij)meani(xij) = ejmeani(xij).  This approach
rests on the assumption (equation [3]) that scattering efficiency is statistically independent of
concentration.  Column 2 of Table 4 gives the components of the resulting approximate budget:

meani(σi) ≈ enitratexnitrate + esulfatexsulfate + ecarbonxcarbon + esoilxsoil, [8]
where xj = meani(xij).
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The approximate scattering contributions from [8] agree with the exact contributions
from [7] to within 10 percent.  Differences arise from empirical associations between scattering
efficiency and concentration.  The discrepancies can be expressed as follows in terms of sample
standard deviations (sdi) and correlation coefficients (ri) over all observations:  meani(eijxij)-
meani(eij)meani(xij) = sdi(eij)sdi(xij)ri(eij,xij).  In the case of nitrate, for example, the relevant
entries in Tables 1 and 3 yield 77Mm-1 - 71Mm-1 = (1.5µg/m-3)(8.9m2/g)0.44.

The mean scattering efficiencies ej appearing in [8] are of course usually unknown, and
must themselves be estimated.  Regression of total scattering on species concentrations yields the
estimates ej

OLS shown in column 2 of Table 5.  Although the regression model fits the data well
(r=0.960), the true values enitrate and esoil (column 1) lie outside the 95% confidence intervals of
the regression estimates enitrate

OLS and esoil
OLS.  Substitution of the regression estimates for the

mean scattering efficiencies in [8] yields the regression budget for particle light scattering,
meani(σi) = enitrate

OLSxnitrate + esulfate
OLSxsulfate + ecarbon

OLSxcarbon + esoil
OLSxsoil, [9]

given in column 3 of Table 4.  A comparison with the exact budget (column 1) reveals
substantial inaccuracies in the regression estimate.

In an ordinary application, a puzzlingly high regression coefficient for nitrates might
plausibly be attributed to a negative artifact in the mass measurement.  The coefficient would
then be interpreted as the ratio of [total] in situ nitrate scattering to [partial] filtered nitrate mass,
the mass measurement being biased by losses to volatilization.  Similarly, an insignificant
coefficient for soil might be attributed to imprecise determinations of the trace elements used to
estimate soil mass.  These explanations are inapplicable here, however, because the nitrate and
soil components of the model aerosol supplying our scattering data are precisely as represented
by our mass data.

The errors in the regression estimates ej
OLS, like those in the approximate budget [8], are

traceable to associations in the data between scattering efficiencies and concentrations.  Table 6
gives for our example the decomposition of the error vector δδδδ = Σhδδδδ(h) derived in the preceding
section.  Column h is the component vector δδδδ(h) arising from concentration dependences in the
scattering efficiency of species h; statistically significant effects (p<=0.05) are  underlined.  The
entry δj(h) on row j represents the error these contribute to the estimate for species j.  The sum of
all entries in row j is the total error ej

OLS-ej = δj; for example, enitrate
OLS-enitrate = 7.5 - 5.4 = 1.3 +

1.0 - 0.3 + 0.1.  Statistical significance was determined by bootstrap resampling.

Table 6 illustrates differing ways in which regression analysis can yield unreliable
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estimates of scattering efficiency.  The significant positive error enitrate
OLS-enitrate reflects the

reinforcing effects of significant concentration dependences in two species' scattering
efficiencies.  The negative error esoil

OLS-esoil, whose statistical significance is less pronounced,
reflects the reinforcing effects of individually insignificant concentration dependences in all four
species' scattering efficiencies.  Only the sulfate estimate esulfate

OLS is "right for the right reasons,"
involving no significant violations of the statistical assumption [3].

The most troubling result concerns the carbon estimate, which seems almost as accurate
as the sulfate estimate.  The regression coefficient ecarbon

OLS is well within its estimated
uncertainty (p<= 0.05) of the true value.  Our microscopic view suggests this superficial
agreement is fortuitous, however.  Table 6 shows that it conceals offsetting errors produced by
significant concentration dependences in esulfate and ecarbon. 

Our analysis to this point has not explicitly accounted for the effects of water uptake by
hygroscopic species.  The high correlation observed in Table 3 between the scattering
efficiencies of nitrate and sulfate suggests that both are driven by ambient variations in relative
humidity.  The influence of humidity on nitrate and sulfate scattering can be addressed by the
conventional transformations eijxij = [eij,dry/(1-RHi)]xij = eij,dryxij,wet described earlier.  The often-
disregarded influence of humidity on organic carbon scattering also deserves attention (Saxena
and Hildemann, 1996), but is as yet poorly characterized.  For simplicity and consistency with
past practice (e.g. Groblicki et al., 1981), xcarbon,wet and xsoil,wet are accordingly set equal to xcarbon

and xsoil in what follows. 

Regression of total scattering on the RH-adjusted concentrations xi,nitrate/(1-RHi),
xi,sulfate/(1-RHi), xi,carbon, and xi,soil yields the estimates shown in column 4 of Table 5.  Note that
the transformation of nitrate and sulfate concentrations changes the regression coefficients for the
untransformed carbon and soil concentrations.  Table 7 shows the structure of the errors also to
be quite different.  Substitution of the new estimates in [8] yields a revised scattering budget,
meani(σi) = enitrate,dry

OLSxnitrate,wet + esulfate,dry
OLSxsulfate,wet + ecarbon

OLSxcarbon + esoil
OLSxsoil, [10]

given in column 4 of Table 4.

Accounting for RH in the regression yields mixed results for our example.  The new
estimates of scattering efficiencies for nitrate and soil are within their estimated uncertainties
(p<= 0.05) of the true values (Table 5), and yield much more realistic contributions to scattering
(Table 4).  The RH-adjusted sulfate efficiency remains close to the true RH-adjusted value (Table
5), but yields a less realistic contribution to scattering (Table 4) when multiplied by RH-adjusted
concentration.  The fortuitous accuracy of the carbon estimate is lost, with the offsetting errors of
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the earlier version replaced by reinforcing errors in the new (Table 7). 

Figure 1 summarizes the foregoing estimates of scattering efficiency, along with others
from regressions allowing the intercept to float, a common option.  For the particular set of
observations examined here, the chemically resolved scattering efficiencies derived from
regression analysis are not obviously more informative than the overall mean ratio of total
scattering to total mass.

Before leaving this example, we may note that our model data set was an ideal candidate
for regression analysis. 
i The functional dependence of total scattering on species concentrations is exactly linear,

because the species are externally mixed. 
ii The regression model is perfectly specified, because there are no “unmeasured” species,

no “background” scattering. 
iii The predictor variables are known without error, because the response variable is

calculated from these as measured. 
The errors in our apportionments resulted from the inevitable tradeoff for regression’s limited
data requirements.  The non-random variations in scattering efficiency which biased our
estimates were simply undetectable, without information that went beyond species concentrations
and total scattering.

NON-EXTERNAL MIXTURES

Detailed analyses by McMurry and Zhang (1991) indicated that some species in the actual
SCAQS aerosol were probably mixed within individual particles.  This section briefly indicates
the methodological adjustments that must be made to accommodate more realistic aerosols in
which distinct species are not distinct sub-collections of particles. 

The fundamental complication introduced by non-external mixtures is that individual
species no longer possess unambiguous scattering coefficients of their own (White, 1986). 
Unlike scattering by separate particles, the scattering by a single particle is not a sum of
contributions from its constituent parts.  Various accounting schemes can be used to construct
within-particle scattering budgets, but the resulting apportionments are necessarily somewhat
conventional.  Their attribution of scattering to a species does not necessarily yield the quantity
of practical interest, which is the scattering decrement to be expected from the reduction or
elimination of that species. 
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The problem is easily seen if we imagine two species of Rayleigh scatterers, of similar
size and refractive index.  A mixed dimer particle, formed from one monomer of each species,
scatters approximately four times the energy either monomer does on its own.  Thus, although
neither component “contributes” more scattering than the other, removing either monomer
reduces dimer scattering by more than half.

Scattering efficiency can still be defined as the ratio of scattering decrement to mass
decrement when a species is removed in a specified manner, the decrements referring to the
(observable) properties of the whole aerosol (White, 1986).  This generalizes our previous usage
for external mixtures, because the species contributions in that case do add to the aerosol total. 
As shown by our Rayleigh illustration, however, the correspondingly generalized “contributions”
ejxj need no longer add to the total σsp. 

Our Rayleigh illustration shows that the accounting described by equation [1] need not
balance when species are non-externally mixed.  Regression analysis can regard imbalances in
individual observations as errors of either model formulation or extinction measurement.  If we
expect the imbalances to be small and vary randomly from one observation to the next, we may
proceed as before to estimate mean scattering efficiencies as the regression coefficients in [2].  If
we expect the imbalances in [1] to favor one side consistently over the other, we may instead
allow the intercept in our regression to float.  In either approach the general analysis of
estimation error must expand to include terms involving correlations with the imbalance.

Figure 2 shows exact and estimated scattering efficiencies for a model of the SCAQS
aerosol as an internal mixture.  Although aerosol mixing structure is critical to the theory, it has
little practical effect on scattering efficiencies modeled or estimated for the SCAQS observations.

SUMMARY

The foregoing sections examined the theoretical basis for apportioning light scattering
among species whose particle size distribution and water uptake can vary from sample to sample.
 For clarity and simplicity, we focused on the ideal case of external mixtures and accurate
measurements.  We demonstrated in this setting that multiple linear regression yields unbiased
apportionments, under a statistical condition that may or may not be satisfied in the actual
atmosphere. 

The theory developed here requires that each species' scattering efficiency vary
independently of all species' mass concentrations.  Explicit formulas can be derived that relate



12

violations of this condition to biases in the regression estimates.  These formulas allow us to
resolve the aggregate errors in regression estimates into distinct components, each traceable to a
different species' scattering efficiency.  The decompositions can show "accidentally" accurate
estimates to conceal offsetting component errors.  This line of analysis was illustrated with a
concrete example based on actual measurements of species size distributions and water uptake. 

This paper identifies theoretical conditions that justify regression apportionments of light
scattering, but does not address the generality with which these conditions are satisfied in actual
applications.  Application of our methodological tools to a variety of other settings is needed to
establish the representativeness of our empirical results. 
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mean(xj) sd(xj) mean(ej) sd(ej)
  j µg/m3 µg/m3 m2/g m2/g
Nitrate 13.3 8.9 5.4 1.5
Sulfate 9.5 4.6 5.1 1.4
Carbon 12.3 5.8 5.8 0.7
Soil 4.8 2.4 2.8 1.5

Table 1.  Summary statistics for external mixture model of SCAQS aerosol.  Columns give
arithmetic means and standard deviations of species mass concentrations and scattering
efficiencies. 

correlation, r xj

Nitrate Sulfate Carbon Soil
Nitrate 1 0.47 0.43 +

ej Sulfate 0.93 1 0.38 -
Carbon + + 1 +
Soil - - - 1

Table 2.  Pearson coefficients for inter-species correlations of mass concentration (above
diagonal) and scattering efficiency (below diagonal) in external mixture model of SCAQS
aerosol.  Signs are indicated for all correlations; values are given only where statistically
significant (p<=0.05).

correlation, r xj

Nitrate Sulfate Carbon Soil
Nitrate 0.44 + - -

ej Sulfate 0.44 + - -.39
Carbon - + 0.34 -
Soil + - - -

Table 3.  Pearson coefficients for correlation of scattering efficiency (ej) with mass concentration
(xj) in external mixture model of SCAQS aerosol.  Signs are indicated for all correlations; values
are given only where statistically significant (p<=0.05). 
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m(ejxj) m(ej)m(xj) ej
OLSm(xj) ej,dry

OLSm(xj,wet)
  j equation [7] equation [8] equation [9] equation [10]
Nitrate 77 71 100 69
Sulfate 50 48  55 38
Carbon 73 72  58 97
Soil 13 13 - 1 11

Table 4.  Exact (first column) and estimated (second through fourth columns) contributions
(Mm-1) to mean scattering in external mixture model of SCAQS aerosol.  Column headings are
simplified from notation in text:  m(xj) = meani(xij), m(ej) = meani(eij), etc.

mean(ej) ej
OLS mean(ej,dry) ej,dry

OLS

  j m2/g m2/g m2/g m2/g
Nitrate 5.4 7.5±0.6
Sulfate 5.1 5.8±1.0
Carbon 5.8 4.7±0.8 5.8 7.9±0.6
Soil 2.8 -.3±1.5 2.8 2.3±1.4
Nitrate/(1-RH) 2.2 1.9±0.2
Sulfate/(1-RH) 2.1 1.6±0.4

Table 5.  Mean scattering efficiencies for external-mixture model of SCAQS aerosol, compared
with regression estimates from equation [5].  Regression coefficients are accompanied by
standard errors, and are underlined if they disagree (p<=0.05) with the true means.
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δj(h), m2/g δδδδ(h)
Nitrate Sulfate Carbon Soil

Nitrate 1.3 1.0 -.3 0.1
j Sulfate 0.4 0.2 0.2 -.1

Carbon -.9 -.7 0.5 0.1
Soil -1.2 -1.0 -.6 -.3

Table 6.  Decomposition of estimation errors ej
OLS-ej in Table 5.  Entries in column h arise from

concentration-dependent variations in the scattering efficiency eh of species h; the sum of the
entries in row j is the error ej

OLS-ej in the regression estimate for species j.  Statistically
significant (p<=0.05) values are underlined.

δj(h), m2/g δδδδ(h)
Nitrate Sulfate Carbon Soil

Nitrate -.1 -.1 -.1 0.0
j Sulfate -.3 -.2 0.1 -.1

Carbon 0.7 0.7 0.5 0.1
Soil 0.5 -.2 -.6 -.2

Table 7.  Decomposition of estimation errors ej,dry
OLS-ej,dry in Table 5.  Entries in column h arise

from concentration-dependent variations in the dry scattering efficiency eh,dry of species h; the
sum of the entries in row j is the error ej,dry

OLS -ej,dry in the regression estimate for species j. 
Statistically significant (p<=0.05) values are underlined.
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Figure 1.  Mean scattering efficiencies for the external mixture model of the SCAQS aerosol. 
Short horizontal lines indicate exact model values for the indicated chemical species.  Symbols
indicate estimates from regression with zero or floating intercept, and implicit or explicit
treatment of humidity.  For the implicit RH treatment, the exact mean(ej) and zero-intercept ej

OLS

are from respectively the first and second columns of Table 5.  For the explicit RH treatment, the
corresponding mean(ej,dry) and ej,dry

OLS from the third and fourth columns of Table 5 are
multiplied by mean(1/(1-RH)) to facilitate visual comparison. 

The long horizontal line marks the observable mean efficiency of the total aerosol.  Standard
deviation and standard errors are indicated for the bulk efficiency and regression estimates.

Figure 2.  Mean scattering efficiencies for the internal mixture model of the SCAQS aerosol. 
Plotting conventions are as in Figure 1.








